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ABSTRACT

We prove that there exists a Lipschitz function from £ into R? which is
Gateaux-differentiable at every point and such that for every z,y € ¢!,
the norm of f/(z) — f'(y) is bigger than 1. On the other hand, for every
Lipschitz and Gateaux-differentiable function from an arbitrary Banach
space X into R and for every € > 0, there always exist two points z,y € X
such that || f'(z)— f'(y)|] is less than ¢. We also construct, in every infinite
dimensional separable Banach space, a real valued function f on X, which
is Gateaux-differentiable at every point, has bounded non-empty support,
and with the properties that f’ is norm to weak* continuous and f'{X)
has an isolated point @, and that necessarily a # 0.
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1. Introduction

Let f be a mapping from a Banach space X into a Banach space Y which is
Gateaux-differentiable at every point. Our purpose is the study of the range
of the derivative of f. We denote this range f'(X).Let us recall that sufficient
conditions on a subset A of a dual Banach space X* so that it is the range of
the derivative of a real valued function on X which is Fréchet-differentiable at
each point have been obtained in [BFKL], [BFL], [AFJ} and [G1]. In this case,
it was noticed in [AD] that whenever X is an infinite dimensional Banach space
with separable dual, there exists a C!-smooth real valued function on X with
bounded support and such that f'(X) = X*. On the other hand, it follows from
[H] that if f is a function on ¢y with locally uniformly continuous derivative,
then f'(co) is included in a countable union of norm compact subsets of £:.
The structure of the range of f' whenever f’ satisfies a Holder condition has
been investigated in {G2]. On the other hand, it was observed in [ADJ]} that
if X and Y are separable Banach spaces and if X is infinite dimensional, one
can always find a Gateaux-differentiable function f: X — Y such that f'(X)
coincides with £(X,Y). We shall investigate here phenomena which can occur
when f is Gateaux-differentiable, but not when f is Fréchet-differentiable. In
particular, for each infinite dimensional separable Banach space X, we shall
construct in section 2 a Gateaux-differentiable function f on X, with bounded
support, and such that for all z # 0, || f'(z) — f/(0){] > 1. In section 3, we shall
consider the following question: let X,Y be two Banach spaces. Is it possible to
construct a Lipschitz continuous mapping f: X — Y, Gateaux-differentiable at
each point, and such that, for all 2,y € X, = # y, we have ||f'(z) - f'(y)|| > 17
Clearly, this is not possible whenever £(X,Y’) is separable. We shall prove that
this is not possible either whenever Y = R, but such a construction will be
carried out whenever (X,Y) = (£1,R?) and whenever (X,Y) = (¢, ) with
1<p<Lqg<+c0.

2. Isolated points in the range of the derivative of a function

Let X be a Banach space, and f be a real valued function defined on X. If
f is Fréchet-differentiable at every point, then Maly’s Theorem ([M]) asserts
that the range of f’, denoted f'(X), is connected. Therefore, if f is not affine,
f'(X), endowed with the norm-topology, has no isolated points. If f is Gateaux-
differentiable at every point of X and if f is not affine, the following proposition
says that f'(X) has no w*-isolated points. We shall see later that in this case
f'(X) can have isolated points for the norm topology.
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ProOPOSITION: Let X be an infinite dimensional Banach space, and let f be a
real valued locally Lipschitz and Gateaux-differentiable function on X. Then
either f is affine or f'(X) has no w*-isolated points.

Remark: J. Saint Raymond ([S]) constructed a mapping f from R? into RZ,
Fréchet-differentiable at each point, and so that {det(f'(z));z € R?} = {0,1}.
Therefore f'(R?) is not connected and has two isolated points. Consequently,
there is no analog of Maly’s theorem and of the above proposition for vector
valued mappings.

Proof: Let f be a real valued locally Lipschitz and Gateaux-differentiable
function on X which is not affine. Therefore, Card(f'(X)) > 2. Fixy* € f'(X),
and we may assume that y* = f'(0). To see that y* is not w* isolated, fix any
z* = f'(2) # y* and a neighbourhood

V={z" € X"|(z" —y")(zi)| <e,1<i<n}.

Without loss of generality, we can assume that z* ¢ V and z; = 2. Define

F:R" —» R by
F(tl)th"'vtn) = f(ztmzz)
=1

Since F is locally Lipschitz continuous and Gateaux-differentiable on R", it is
Fréchet-differentiable on R™ and

Fl(ty,te,... tn) = (f’(éhm) (%))

So F'(0,0,...,0) = ((y*,z:)) and F'(1,0,...,0) = ({2*,x;)). Since z* ¢ V,
F’(1,0,...,0) # F'(0,0,...,0). By Maly’s theorem, F'(R") is connected.
Therefore, there is a t = (t1,t2,...,%,) such that 0 < ||F'(t) — F'(0)] < e.
Thus, if we set z = t1z; + tax2 + -+ - + 2y, we see that * = f'(z) € V and
£yt

From now on, we say that a real valued function on an infinite dimensional

n

Jj=1

Banach space X is a bump function if it has bounded non-empty support. We
shall denote B(r) the set of all z* € X™* such that |lz*|| < r. If E is a Banach
space, z € E and r > 0, we denote Bg(z,r) (resp. Bg(x, 7)) the open ball (resp.
closed ball) in E of center z and radius r. If f is a continuous and Gateaux-
differentiable bump function on X, then, according to the Ekeland variational
principle, the norm closure of f'(X) contains a ball B(r) for some r > 0. A
natural conjecture would be that the norm closure of f'(X) is norm connected,



260 R. DEVILLE AND P. HAJEK Isr. J. Math.

or at least that f'(X) does not contain an isolated point. This is not so as
shown by the following construction.

THEOREM 1: Let X be an infinite dimensional separable Banach space. Then,
there exists a bump function f on X such that f is Gateaux-differentiable at
every point, f' is norm to weak* continuous and ||f'(0) — f'(z)|| > 1 whenever
z #0. If X* is separable, we can assume moreover that f is C' on X\{0}.

Remark: According to the above discussion, 0 is not an isolated point of f'(X),
so necessarily f'(0) # 0.

Proof: We shall use two lemmas.

LEMMA 1: Let X be a Banach space, U be an open connected subset of X*
such that 0 € U and z* € U. Assume there exists on X a Lipschitz continuous
bump function which is Gateaux-differentiable (resp. Fréchet-differentiable) at
every point. Then there exists a Lipschitz continuous bump function § on X
with support contained in the unit ball, which is Gateaux-differentiable (resp.
Fréchet-differentiable) at every point, such that 8'(X) C Uand p'(z) = z* for
all z in a neighbourhood of (.

Proof of Lemma 1: Let b be a Lipschitz bump function on X which is Gateaux-
differentiable (resp. Fréchet-differentiable) at every point of X. By translation,
we can assume that b(0) # 0. Replacing b(z) by A1b(A2z), we can also assume
that there exists 0 < § < 1 such that b(z) > 1 whenever ||z|| < § and that the
support of b is included in the unit ball. Composing b with a suitable C*°-smooth
function from R into R,we can assume moreover that b(z) = 1 whenever ||z{| <4,
and that 0 < b(z) <1 for all x € X. Since U is connected, there exists finitely
many points z,z7,...,z} € U such that 25 = 0, z;, = =", and the segments
[z7,},,] are included in U. The polygonal line R = \JI=; [z}, %}, 4] is compact,
therefore there exists ¢ > 0 such that R + B(e) C U. By adding if necessary
points on the polygonal line R, we can assume that for all i € {1,2,...,n},
llet = 2, I < /116l Define

bi(z) = b(x). (2] — zi_1)(2).
We have bl(z) = (z} — z}_;)(2).b' (z) + b(z).(e} — z}_,), with b(z).(z] — 2]_;)
€[0,zf —z; ;] and ||(z} —x}_,)(z).V'(2)]| < € for all z € X, therefore b}(X) C
[0,2F — x;_;] + B(e). Finally, set

n

Bl) = 3 5 bile/6);

=1
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B is a Lipschitz continuous bump function on X which is Gateaux-differen-
tiable (resp. Fréchet-differentiable) at every point. Let £ € X and assume that
< |z|| <6 forl1<i<n Ifj>4, |lz/697Y > 1, s0 bj(y/s7~1) = 0 for
all y in a neighbourhood of & and b(x/67~1) = 0. If j <4, [|x/6'71|| < 4, so

bi(x/8771) = } - «}_,. Therefore

i—1
B(x) =Y (&) - zj_y) +bi(z/6") = 2y +bi(2/8) € [z}_y,2]] + B(e).
=1
Moreover, if ||z|| < 0", then f'(z) = 2} = 2*. Thus f'(z) = * for all z in a
neighbourhood of 0 and 8'(X) C R+ B(e) C U.

LEMMA 2: Let X,Y be two Banach spaces, a € X, V be an open neighbourhood
ofa, and f : V = Y be continuous on V and Gateaux-differentiable at every
point of V\{a}. If f'(z) has a limit ¢ in L(X,Y) endowed with the strong
operator topology as x tends to a, then f is Giteaux-differentiable at a and

f'(a) = ¢.

Proof of Lemma 2: This result is well-known whenever X is the real line.
In the general case, fix h € X. The mapping ¢ defined on the real line by
én(t) = f(a + th) whenever t # 0, ¢},(t) = f'(a +th).h tends to £.hin ¥ as
t tends to 0. Using the one dimensional case, f is differentiable at a in the
direction h and f'(a).h = £.h. This proves thatf is Giteaux-differentiable at a
and f'(a) = ¢.

In order to prove the theorem, let a* € X* such that 1 < ||a*|| < 2. Let (u,)
be a dense sequence in X and

Vo ={2* € X*;|2*(us) —a”(u;)| < 1/2" for all i € {1,...,n}}.

Let (Va)n>o be a decreasing sequence of weak™ open subsets containing a so
that, if y* € V, and if (y) is bounded, then (y) converges to a* for the weak*-
topology. Moreover, W,, = V,, N {z* € X*;1 < ||z* — a*|| < 2} is connected for
each n, because X is infinite dimensional. Let (z}) C X* be a sequence such
that 27 = 0 and for every n, 2}, € W,. For each n, 1 < ||z}, — a*|| < 2 and
(xy,) converges to a*for the weak* topology. W, — z, = {&* — z};2* € W, } is
a norm open connected subset of X* containing 0. Since z,,, € Wpy1 C Wy,
we also have x| — z;, € W, —x;,. Since X is separable (resp. X* is separable)
there exists on X a Lipschitz continuous bump function which is Gateaux-
differentiable (resp. Fréchet-differentiable) at each point. According to Lemma
1, there exists a Lipschitz continuous bump b,, which is Gateaux-differentiable
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(resp. Fréchet-differentiable) at every point, such that b (X) C W, — z},, with
support in the unit ball and such that ¥),(z) = z},, — z; for all z satisfying
||| < é,. Denote ¢; =1 and, forn > 2, ¢, = H::ll 0pn. Define

~+00
b(z) = Z nbn(z/cn);
n=1

b has bounded support since b(z) = 0 whenever ||z|| > 1. On X\{0} this sum is
locally finite, so b is Gateaux-differentiable (resp. Fréchet-differentiable) at each
point of X\{0}. If cp41 < ||z|| < cn, then we have ¥'(z) =z} + b, (x/cp) € Wh,
so [|p'()|| is uniformly bounded in &, ¥ (X\{0}) C X*\B(a*,1), and b'(z) 5
a* as £ — 0. Lemma 2 then shows that b is Gateaux-differentiable at 0 and
that b'(0) = a*.

3. Can all the derivatives be far away from each other?

We first notice that, under mild regularity assumptions, the answer to the above
question is negative for reai valued functions.

PROPOSITION: Let X be a Banach space and f: X — R be a Lipschitz contin-
uous, everywhere Gateaux-differentiable function. Then, for every x € X and
every € > 0, there exists y,z € Bx(xz,¢) such that ||f'(y) — f'(z)|| <e.

Proof: We shall actually show that if f: X — R is locally uniformly continuous
and everywhere Géteaux-differentiable, then, for every z € X and for every
e > 0, there exists § > 0 such that for every h € X, |lh|| < 4, there exists
y € Bx(z,e) such that [|f'(y + k) — f/(y)ll < e Fixzx € X and e > 0
such that f is uniformly continuous on Bx(x,2¢g). Fix also 0 < € < g9. By
uniform continuity, there exists § > 0 such that |f(z) — f(y)| < €?/4 whenever
¥,z € Bx(x,2¢p) and ||z — y|| < 6. Without loss of generality, we can assume
that § < €/2. Take any h € X such that [|h|] < §. Define ¢: X = R by
o(y) = fly+h)—f(y) if ly—z|| < g0 and p(y) = 400 otherwise. The function ¢
is lower semi-continuous on X and, for all y € Bx (z,¢0), —€2/4 < v(y) < €2/4.
In particular, p(z) < infyex ¢(y) + €2/2. The Ekeland variational principle
then tells us the existence of y € X such that ||y — z|| <e/2 and for all u € X,
o(u) > o(y) —€||lu — y||- Since {ly — z]| < /2 < g, the function ¢ is Gateaux-
differentiable at y and we obtain ||¢'(y)]| < €. Hence, if we denote z = y + h,
If'(y) = f'(2)]l < €, and we have ||z — z|| < J|All + |ly — =l <e.

The derivatives of a Fréchet-differentiable mapping cannot be far away from
each other for mappings which are everywhere Fréchet-differentiable.
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ProprosITION: Let X,Y be separable Banach spaces and f: X — Y be an
everywhere Fréchet-differentiable locally uniformly continuous mapping. Then,
for every z € X and every ¢ > 0, there exists y,z € Bx(z,¢), y # 2, such that

If' @) - f2)ll <e.

Proof: Fix € > 0 and np > 0 such that f is uniformly continuous on
Bx(x,e + 1/ng). For each n > 1, define

An = {y € Bx(z,¢),lIf(y + h) = f(y) = f'(y)-hll < el|hl| whenever [|R|| < 1/n}.

Since Bx(x,€) = U, >n, An, there exists n; > no and u € Bx (z,¢) such that u
is an accumulation point of A,,. Pick y,z € A, such that y # z and |ly — z|| <
«, where o is chosen so that || f(u)— f(v)|| < €/n1 whenever u,v € B(z,e+1/ng)
and |ju — v|| < a. We have

Ifly+h) = f(y) = f'(y)-hll Se/ni and |If(z+h) = f(z) = f'(2).bll < e/ma

for all h such that ||h|| < 1/n4, so

I(£(y + R) = f(z+ h) = (f{y) = £(2)) = (' (W) = £(2))-hll < 2¢/ma.

Therefore,

1(f'(y) = ()bl < de/n1.
Since this is satisfied for all h such that ||h|| < 1/n), we obtain that
' (y) = f'(2)ll < 4e.

In view of the above propositions, one could believe that whenever X Y are
Banach spaces (or vector normed spaces) and f: X — Y is a mapping Giteaux-
differentiable at each point of X, then for every € > 0, there exists y,z € X
such that || f'(y) — f'(2)]| < &. Our next result proves that this is not so.

THEOREM 2: (1) There exists a Lipschitz mapping F: ¢! — R?, Gateaux-
differentiable at each point of ¢*, such that for every z,y € !, = # y, then
|F'(z) — F'(y)ll (e g2y > 1. Moreover, for each h € £*, x — F'(z).h is continu-
ous from £* into R?.

(2) Let us denote D the vector normed space of elements of ¢! with finite
support. There exists a Lipschitz function G: £* — R, Gateaux-differentiable at
each point of {*, such that for everyz,y € D,z # y, then ||G'(2)—G'(¥)||e= > 1.

We shall construct F' and G with the properties of Theorem 2 using series. We
were inspired by a construction from [DI]. We need an auxiliary construction.
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LEMMA 3: Given A = (a/,a,b,b') € R* such that ' < a <b< b ande > 0,
there exists a C®-function ¢ = pa : R2 — R? such that:
(i) le(z,y)l <e for all (z,y) € R?,
(1) ¢(z,y) =0 whenever z ¢ [d’,V'],
(iid) 1152 (z,9)l| < ¢ for all (z,y) € B,
(iv) ||%‘5(z,y)|| = 1 whenever z € [a, b],
V) 152(,p)l| < 1 for all (z,y) € B,
(vi) if we denote p(z,y) = (p1(z,y),v2(x,y)), then %%(z,ﬂ) = 1 whenever
z € [a,b].

Proof of Lemma 3: Let 8: R = R be a C*-smooth function such that 0 <
B(z) < 1 for all z, B(z) = O whenever z ¢ [a’,V'] and B(z) = 1 whenever
z € [a,b]. If n > 1 is large enough, the function defined by
Blz) , .
o(w,9) = 2% (sin(ry), cos(rny)

satisfies the desired properties.

We shall also use the following criterion of Gateaux-differentiability of the
sum of a series:

LEMMA 4: Let X and Y be Banach spaces and, for all n, let f,: X =Y be
Gateaux-differentiable mappings. Assume that ()" f,) converges pointwise on
X, and that there exists a constant K > 0 so that for all h,

(1) > |%2 @) < xia

Then the mapping f = ), fn is Gateaux-differentiable on X, for all z,
() = ¥ ,51 folx) (where ‘the convergence of the series is in L(X,Y) for
the strong op;erator topology), and f is K-Lipschitz. Moreover, if each f] is
continuous from X endowed with the norm topology into L(X,Y) with the
strong operator topology, then f’ shares the same continuity property.

Proof of Lemma 4: Fix x € X. First observe that condition (1) implies that
for all h, the series (3 %%(x)) = (Y fl.(z).h) converges in Y. Therefore, the
series (3 f}(z)) converges in L(X,Y) for the strong operator topology, to some
operator T € L(X,Y), and by (1), ||T|| < K. For each h € X, we define
gn: R = Y by gu(t) = fa(z + th). The function g = ), -, g» is well defined.

Since af
S lglleo < 3 sup | SR @)] < Kilnl
n>1 n>1 s€X
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the mapping g is differentiable and

=Y 60 =3 Yoy =),

n>1 n>1

Thus we have proved that f is differentiable along every direction k and that
%,f;(a:) = T(h). In other words, f is Gateaux-differentiable at z and f'(z) = T.
Since for all z, ||f'(z)l| < K, the mean value theorem implies that f is K-

Lipschitz.

Proof of Theorem 2, part (1): Fix an enumeration Ay = (aj,, ax, bx, b)), k € N,
of all quadruples of dyadic numbers such that aj, < ay < by, < bj,. Select integers
my such that for each n, n < m} and (m}): is an increasing sequence, and
satisfying

(2) miy=m)=>n=pand k={¢.

This condition is satisfied, for instance, whenever m? = 2*.3". Fix ¢ > 0 and
let 7 be positive real numbers such that Y oo 372 eF = . We note &5 =
oo L ER, so that S 00, e, =&. Put o €1 — R? such that, if z = (2;) € £,
then fui(z) = @a,er(Tn,Tmp) fax is a C* function on ¢'. The function
F: (' — R? we are looking for is defined by
= Z Z fn,k($)

neNkeN

CLamM 1: F is well-defined.

Indeed, according to condition (i) of Lemma 3, |[fa.kllco = [l¢A,.erllo0 = €7, 50
the series defining F' converges uniformly.

CLAM 2: F is Gateaux-differentiable on £* and F is (1+¢)-Lipschitz-continuous
on {*.

To see this, we apply Lemma 4: let h = (hq,...,hn,...) € ¢*. By (iii) and
(v), we have for all n, k

' Ofnk

sup | 55 @) < Vg | + € n] < Vg |+ <l

So, because of condition (2),

S st o] < e

7

We have proved that condition (1) of Lemma 4 is satisfied with K = 1+ ¢, thus
F is Gateaux-differentiable on ¢! and F is (1 + ¢)-Lipschitz-continuous on ¢!.
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CLamM 3: Ifz #y €, then ||F'(z) — F'(y)l| o gz > 1 — 2e.

Indeed, let n € N such that z,, # y,. Let k be such that z, € [ax,bs] and
Yn ¢ [a}, b}]. According to (ii) and (iv) of Lemma 3,

6fn,k

afn,k _ _
” Bscm;: (m)“ =1 and 8xmz (y) =0
On the other hand, for all r,
afm;c',r afm;;,r
| @ <o and [FrEmw] <<
and, if £ # m} and ({,7) # (n, k),
6f£,r aff,r _
- (z) =0 and By (y)=0
Therefore,
oF OF
! _ ! 1 m2 _
IF'@) = F)lewrn 2 |5— @) - 5— )|
af@ T 8f€ r
>1- Y —(z) - 5—=—()
(EPR (k) ‘ Bacmg me;; H
>1-2e.

Let us now prove part (2) of Theorem 2. Since F: ¢! — R?, we can write
F = (G,H), where G,H: ! - R. We shall also denote fnr = (gn ks Pnk);
G: f' > R is Lipschitz continuous, Gateaux-differentiable at each point of £1.
Let = (z;), ¥y = (y;) € D and n be such that z, # y,. Let k be such that
Tn € [ak, br], yn & [ay, b)) and Tmr = 0. According to (vi) of Lemma 3, we have

e

agn,k _

(:v)Hzl and T
Mg

We conclude, as in the proof of Claim 3 of part (1), that
IG'(z) — G'()lle~ > 1 —2e.

Remark: (1) If we set ® = f/(1 — 2¢), we have obtained, for every a > 0, the
construction of a function ®: ¢! — R?, Gateaux-differentiable at every point of
¢4, satisfying:

(i) for all z,y € €1, || ®(z) — ()| < (1 + a)llz - ylis,

(i) for all z # y € €4, [|2'(z) — '(y)ll 2 ry) 2 1.
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(2) Fix h € £*. Since ¢ = F'(z).h is continuous from ¢! into R?, the
set {F'(z).h;z € €'} is connected. This is in contrast with the fact that
{F'(z);x € £'} is discrete in £(£*,R?).

(3) A careful look at the above construction shows that f is uniformly Gateaux-
differentiable.

(4) Note that for cardinality reasons, if dim(X) > 1 and £(X,Y) is separable,
then for all Gateaux-differentiable mappings from X into Y, and for all ¢ > 0,
there exists y,2 € X, y # z such that ||f'(y) — f'(2)|] < e. Therefore, it is
not possible to replace ¢! by ¢7 (p > 1) in Theorem 2. However, there exists a
Lipschitz function H: ¢2 — ¢2, Gateaux-differentiable at each point of £2, such
that for every z,y € £2, if £ # y, then

|H'(z) = H' ()|l ce2y > 1.
This will follow from the following more general result:

THEOREM 3: Let X, =7 if1 <p < 400 and X =cp. Let us fix 1 < p,q <
+00. The following assertions are equivalent:
(1) There exists a Lipschitz continuous mapping H: X, — X,, Gateaux-
differentiable at each point of X,, such that for every z,y € X,, z # ¥,
then |H'(z) — H'()llz0x,xp) > 1.
(2 p<a
(3) L(Xp,X,) is not separable.

Proof of Theorem 3: According to Remark (4) above, (1) implies (3). If
p > ¢, then by Pitt’s theorem, all operators from X, to X, are compact, hence
L(Xp,X,) is separable. Therefore (3) implies (2). So it remains to prove that
(2) implies (1). Assume that p < g and let (e,) be the usual basis of X,. Let
Ty € L(R?,X,) defined by Ty(z,y) = zeax + yesx+1. Denote a, the common
norm of the operators Ty. Let Ay, ef, m} and ¢a,r be defined as in the
proof of Theorem 2. Put f,x: X, — X, such that, if z = (z;) € X,, then
S k() = Tmp © A, en (Tn, Tz ): the function f,  is a C*° mapping from X,
into X;. The function H: X, - X, we are looking for is defined by

H(z) = Z an,k(x).
neN keN

As in the proof of Theorem 2, H is well-defined. Lemma 4 is no longer appli-
cable in order to show that H is Géiteaux-differentiable at each point of X,.
But Lemma 4 remains true if the hypothesis (1) from Lemma 4 is replaced by
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condition (3) below:

(3) for all h, (Z %%(x)) converges uniformly with respect to .

So, fix h = (hy,...,hn,...) € X,. We have

8fn,k

oh (1)) = hnuk,n(x) + hm;”k,n(x)

with [[un(2)llg < £7ag, Ven(z) € spanfeamp, eamy 41} and [vk2(@)lg < aq.

We claim that both series (3_, ,, hntk,n(2)) and (3 ,, hmp vk, (2)) are uni-
formly converging with respect to z. Indeed, for the first one, this follows from
the fact that for each z, ||hnus,m(2)|lq < [|Rllp-aqg€}, and that 5707 | 52 e <
+00. For the second one, (3 Amyvk,m(z)) converges uniformly because it sat-
isfies the uniform Cauchy condition. Indeed, fix § > 0 and a finite set A C Nx N
such that 3_; 124 hﬁz}: < 6. For fixed z, the v; () are elements of X, with
disjoint supports, so, for any finite subset F of (N x N)\ 4,

1/q
> mgin@| = (X Mmpun@,

(n,k)EF Xq (n,k)eF
1/q 1/p
aq( > h?n:> Saq< > hfnz) < agd.
(n,k)eF (n,k)EF

Notice that we used in the above chain of inequalities the fact that p < ¢. The
above estimate is uniform in , therefore the series (3_,  hmpvk,n(z)) satisfies
the uniform Cauchy condition. Applying the variant of Lemma 4 mentioned
above, we get that H is Lipschitz continuous and Géateaux-differentiable at each
point of X,,. As in the proof of Theorem 2, one sees that there exists a > 0 such
that for every z,y € Xp, if 2 # y, then |[H'(z) — H'(y)||c(er 00y > a.
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