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1. In troduct ion  

Let f be a mapping from a Banach space X into a Banach space Y which is 

G~tteaux-differentiable at every point. Our purpose is the study of the range 

of the derivative of f .  We denote this range f~(X).Let us recall that sufficient 

conditions on a subset A of a dual Banach space X* so that it is the range of 

the derivative of a real valued function on X which is Fr@chet-differentiable at 

each point have been obtained in [BFKL], [BFL], [AFJ] and [G1]. In this case, 

it was noticed in [AD] that whenever X is an infinite dimensional Banach space 

with separable dual, there exists a gl-smooth real valued function on X with 

bounded support and such that f ( X )  = X*.  On the other hand, it follows from 

[H] that if f is a function on Co with locally uniformly continuous derivative, 

then f~(c0) is included in a countable union of norm compact subsets of ~1. 

The structure of the range of ]~ whenever f '  satisfies a HSlder condition has 

been investigated in [G2]. On the other hand, it was observed in lAD J] that 

if X and Y are separable Banach spaces and if X is infinite dimensional, one 

can always find a G£teaux-differentiable function f:  X ~ Y such that f ' ( X )  

coincides with £(X, Y). We shall investigate here phenomena which can occur 

when f is G~tteaux-differentiable, but not when f is Fr@chet-differentiable. In 

particular, for each infinite dimensional separable Banach space X, we shall 

construct in section 2 a G£teaux-differentiable function f on X, with bounded 

support, and such that for all x ¢ 0, IIf'(x) - f'(0)[I >_ 1. In section 3, we shall 
consider the following question: let X, Y be two Banach spaces. Is it possible to 

construct a Lipschitz continuous mapping f:  X --+ Y, G~teaux-differentiable at 

each point, and such that, for all x , y  E X ,  x ¢ y, we have [[f'(x) - / ' (Y)[I _> 1? 

Clearly, this is not possible whenever £:(X, Y) is separable. We shall prove that 

this is not possible either whenever Y = It{, but such a construction will be 

carried out whenever (X, Y) = (e 1, ~2) and whenever (X, Y) = (~P, gq) with 

1 _<p_< q < +c~. 

2. Isolated points  in the  range of  the  derivative of  a funct ion  

Let X be a Banach space, and f be a real valued function defined on X. If 

f is Fr@chet-differentiable at every point, then Mal~'s Theorem ([M]) asserts 

that the range of ] ' ,  denoted f~(X), is connected. Therefore, if f is not affine, 

f l (X),  endowed with the norm-topology, has no isolated points. If f is G~teaux- 

differentiable at every point of X and if ] is not affine, the following proposition 

says that f l (X) has no w*-isolated points. We shall see later that in this case 

f t (X) can have isolated points for the norm topology. 
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PROPOSITION: Let X be an infinite dimensional Banach space, and let f be a 

real valued locally Lipschitz and G~teaux-differentiable function on X.  Then 

either f is atfine or f t (X)  has no w*-isolated points. 

Remark: J. Saint Raymond ([S]) constructed a mapping f from N2 into/~2, 

Fr~chet-differentiable at each point, and so that  {det(f'(x)); x E N2 } = {0, 1}. 

Therefore f,(N2) is not connected and has two isolated points. Consequently, 

there is no analog of Male's theorem and of the above proposition for vector 

valued mappings. 

Proof'. Let f be a real valued locally Lipschitz and Gftteanx-differentiable 

function on X which is not affine. Therefore, Card(f '(X)) _> 2. Fix y* E f ' (X) ,  

and we may assume that  y* = ft(0).  To see that  y* is not w* isolated, fix any 

z* = f ' (z)  ~ y* and a neighbourhood 

* x V = { x * E X * ; I ( x * - y  )( i ) l < c , l < i < n } .  

Without loss of generality, we can assume that  z* ~ V and Xl = z. Define 

F:II~ n --+ II~ by 

i=1 

Since F is locally Lipschitz continuous and Ggteaux-differentiable on II~ n , it is 

Fr~chet-differentiable on II~ n and 

F ' ( t l , t 2 , . . . , t n ) =  f '  t~x~ (xj) • 
i=1 j = l  

• X So F ' ( 0 , 0 , . . . , 0 )  = ((y , ~)) and F ' ( 1 , 0 , . . . , 0 )  = ((z*,xi)).  Since z* ¢ V, 

F ' ( 1 , 0 , . . . , 0 )  ¢ F ' ( 0 , 0 , . . . , 0 ) .  By Mal3~'s theorem, F'(N n) is connected. 

Therefore, there is a t = ( t l , t2 , . . . , t~)  such that  0 < IIF'(t) - F'(O)II < e. 

Thus, if we set x = tlXl + t2x2 + ... + tnXn, we see that  x* = fr(x) C V and 

x* 7~y*. 

From now on, we say that  a real valued function on an infinite dimensional 

Banach space X is a b u m p  function if it has bounded non-empty support. We 

shall denote B(r) the set of all x* E X* such that  IIx*ll < r. If E is a Banach 

space, x E E and r > 0, we denote BE(X,r) (resp. BE(x,r)) the open ball (resp. 

closed ball) in E of center x and radius r. If f is a continuous and Ghteaux- 

differentiable bump function on X,  then, according to the Ekeland variational 

principle, the n o r m  closure of f ' (X )  contains a ball B(r )  for some r > 0. A 

natural conjecture would be that  the norm closure of f l (X)  is norm connected, 
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or at least that  f r (X)  does not contain an isolated point. This is not so as 

shown by the following construction. 

THEOREM 1: Let X be an infinite dimensional separable Banach space. Then, 

there exists a bump function f on X such that f is G~teaux-differentiable at 

every point, f '  is norm to weak* continuous and [[f'(O) - f ' ( x ) [ [  >_ 1 whenever 

x ¢ O. l f X *  is separable, we can assume moreover that ] is C 1 on X\{O). 

Remark: According to the above discussion, 0 is not an isolated point of f ' ( X ) ,  

so necessarily f ' (0) ~ 0. 

Proof: We shall use two lemmas. 

LEMMA 1: Let X be a Banach space, U be an open connected subset of X* 

such that 0 E U and x* E U. Assume there exists on X a Lipschitz continuous 

bump function which is G~teaux-differentiable (resp. Fk~chet-differentiable) at 

every point. Then there exists a Lipschitz continuous bump function/~ on X 

with support contained in the unit ball, which is Cgteaux-differentiable (resp. 

Frdchet-differentiable) at every point, such that /~ ' (X)  C Uand fl'(x) = x* for 

all x in a neighbourhood of O. 

Proof of Lemma 1: Let b be a Lipschitz bump function on Xwhich is Ggteaux- 

differentiable (resp. Fr~chet-differentiable) at every point of X. By translation, 

we can assume that  b(0) ¢ 0. Replacing b(x) by Alb(A2x), we can also assume 

that  there exists 0 < 5 < 1 such that  b(x) _> 1 whenever Ilxll _< 5 and that  the 

support of b is included in the unit ball. Composing b with a suitable C°°-smooth 

function from IR into IR, we can assume moreover that  b(x) = 1 whenever Ilxll _< 5, 

and that  0 < b(x) _< 1 for all x E X. Since U is connected, there exists finitely 

* * * * = 0 ,  * = and the segments many points Xo, x l , . . . ,  x n E U such that  x o x n x*, 
, n - -1  , , 

[x~, Xi+l] are included in U. The polygonal line R = Ui=0 [xi, Xi+l] is compact, 

therefore there exists ~ > 0 such that  R + B(e) C U. By adding if necessary 

points on the polygonal line R, we can assume that  for all i E {1, 2 , . . . ,  n}, 

I I x ' t  - x '_ ll < dllb'lloo. Define 

b (x) = b ( x ) . ( x ;  - 

We have b~(x) = (x* - X;_l)(X).b'(x ) + b(x).(x* - x~_l), with b(x).(x* - X*_l) 

E [0,x* -x*_ l ]  and II(x* -X~_l)(X).b'(x)l I < c for all x E X, therefore b~(X) C 

[0, x~ - X~_l] + B(~). Finally, set 

/~(x) = £ 5i-lbi(x/hi-1); 
i----1 
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/7 is a Lipschitz continuous bump function on X which is G£teaux-differen- 

tiable (resp. Fr~chet-differentiable) at every point. Let x E X and assume that  

5 i < HXI] __~ 5 i -1  for 1 < i < n. If j > i, ]ix~hi-It] > 1, so bj(y/5 j - l )  = 0 for 

all y in a neighbourhood of x and b}(x/5 j - l )  = O. If j < i, []x/hJ-lN < 5, so 

b}(x/5 j - l )  -- xj - x j_ 1. Therefore 

i--1 

: ( x )  = - + b:(xl  = xi*  1 + b (xl  • [ x t_ , , x t ]  + 
j=l  

= * = x*. Thus/~'(x) = x* for all x in a Moreover, if lixll <_ 5n, then/~'(x) x,~ 

neighbourhood of 0 and/~ '(X) C R + B(e) C U. 

LEMMA 2: Let X,  Y be two Banach spaces, a • X ,  V be an open neighbourhood 

of a, and f : V --+ Y be continuous on V and G£teaux-differentiable at every 

point of V \ {a} .  I f  f ' (x )  has a limit ~ in /Z(X,Y) endowed with the strong 

operator topology as x tends to a, then f is Ggteaux-differentiable at a and 

f'(a) -- e. 

Proof of Lemma 2: This result is well-known whenever X is the real line. 

In the general case, fix h E X. The mapping Ch defined on the real line by 

Ch(t) = f (a  + th) whenever t ~ 0, ¢~(t) = f ' (a  + th).h tends to ~.h in Y as 

t tends to 0. Using the one dimensional case, f is differentiable at a in the 

direction h and f ' (a) .h = g.h. This proves t h a t f  is Ggteaux-differentiable at a 

and f ' (a)  = ~. 

In order to prove the theorem, let a* E X* such that  1 < Iia*ll < 2. Let (un) 

be a dense sequence in X and 

Vn = {x* E X*;Ix*(ui) - a*(ui)I < 1/2 '~ for all i E {1 , . . . , n}} .  

Let (Vn)n_>O be a decreasing sequence of weak* open subsets containing a so 

that,  if y* E Vn and if (y~) is bounded, then (y*) converges to a* for the weak*- 

topology. Moreover, Wn = Vn M {x* E X*; 1 < ]ix* - a* N < 2} is connected for 

each n, because X is infinite dimensional. Let (x~) C X* be a sequence such 

that  x~ = 0 a n d f o r  everyn ,  x~ E Wn. For eachn ,  1 < ] ] x ~ - a *  H < 2 and 

(x*) converges to a ' for  the weak* topology. Wn - x~ = {x* - X*'n, x* E Wn} is 

a norm open connected subset of X* containing 0. Since x* ~+1 E W~+I C Wn, 

we also have X*n+l -- Xn* E Wn - x~. Since X is separable (resp. X* is separable) 

there exists on X a Lipschitz continuous bump function which is Ggteaux- 

differentiable (resp. Fr~chet-differentiable) at each point. According to Lemma 

1, there exists a Lipschitz continuous bump bn which is Ggteaux-differentiable 
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(resp. Fr6chet-differentiable) at every point, such that  b ' ( X )  C Wn - x~, with 

support in the unit ball and such that  b'n(X ) = x~+ 1 - x n for all x satisfying 
n - 1  

[Ixl[ < 5n. Denote C1 : 1 and, for n _> 2, Cn = I-L=1 5n" Define 

+oo 

b(x)  : cnbn(x/c ); 
n-~l  

b has bounded support since b(x) = 0 whenever [[x[[ _> 1. On X\{0} this sum is 

locally finite, so b is G~teaux-differentiable (resp. Fr~chet-differentiable) at each 

point of X\{0}. If Cn+l <_ [[x[[ < Cn, then we have b'(x) = x~ + b ' (x /cn)  E Wn, 

so [Ib'(x)[[ is uniformly bounded in x, b'(X\{0}) C X*\B(a* ,  1), and b'(x) - -~  

a* as x --+ 0. Lemma 2 then shows that  b is G~teaux-differentiable at 0 and 

that  b'(0) = a*. 

3. C a n  all t he  der iva t ives  be  far  away f r o m  each o t h e r ?  

We first notice that,  under mild regularity assumptions, the answer to the above 

question is negative for real valued functions. 

PROPOSITION: Let X be a Banach space and f:  X -~ 1~ be a Lipschitz contin- 

uous, everywhere Ggteaux-differentiable function. Then, for every x E X and 

every e > O, there exists y, z E B x ( x ,  c) such that []f'(y) - f'(z)[[ <_ ~. 

Proof: We shall actually show that  if f :  X ~ I~ is locally uniformly continuous 

and everywhere Gateaux-differentiable, then, for every x E X and for every 

> 0, there exists 8 > 0 such that  for every h E X, [[hll _< 8, there exists 

y E B x ( x , e )  such that  [ [ f ' ( y + h ) - f ' ( y ) [ [  < E. Fix x E X and Eo > 0 

such that  f is uniformly continuous on Bx(x ,2eo) .  Fix also 0 < e < eo. By 

uniform continuity, there exists 5 > 0 such that  [f(z) - f(y)[ < e2/4 whenever 

y, z E B x ( x ,  2e0) and []z - y l ]  _< 8. Without loss of generality, we can assume 

that  5 < e/2. Take any h E X such that  [[hi[ _< 5. Define ~: X --+ ~ by 

~(y) = f ( y + h ) - f ( y )  if ]]y-x]l <_ eo and ~(y) = +c~ otherwise. The function 

is lower semi-continuous on X and, for all y E B x ( x ,  eo), - e 2 / 4  < ~(y) < e2/4. 

In particular, ~(x) < infyex ~(y) + e2/2. The Ekeland variational principle 

then tells us the existence of y E X such that  [[y - xl[ _< e/2 and for all u E X, 

~(u) > ~(y) - el[u - yll- Since tly - xl] -< e/2 < ~0, the function ~ is Gfiteaux- 

differentiable at y and we obtain [l~'(y)[I -< e. Hence, if we denote z = y + h, 

[[f'(y) - f '(z)] I _< e, and we have ]l z - xll _< ]lh[I + ]IY - x]] < e. 
The derivatives of a Fr~chet-differentiable mapping cannot be far away from 

each other for mappings which are everywhere Fr~chet-differentiable. 
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PROPOSITION: Let X , Y  be separable Banach spaces and f :  X -+ Y be an 

everywhere Fr6chet-differentiable locally uniformly continuous mapping. Then, 

for every x E X and every E > O, there exists y , z  E B x ( x , z ) ,  y ~ z, such that 

I I f ' ( Y )  - f ' ( z ) l l  < z.  

Proof: Fix c > 0 and no > 0 such that  f is uniformly continuous on 

B x ( x , c  + 1/no). For each n _> 1, define 

An = {y E Bx(x ,~) ,  IIf(Y + h) - f (y)  - f'(Y).hll < ~llhll whenever Ilhll < 1/n}. 

Since B x ( x , s )  = Un>no An, there exists nl > no and u E Bx (x ,~ )  such that  u 

is an accumulation point of A~,. Pick y, z E A~, such that  y ~ z and IIY - zll < 

a, where a is chosen so that  Nf (u ) - f ( v ) l i  <_ s /n l  whenever u,v  E B ( x , ~ + l / n o )  

and ilu - vii < a. We have 

IIf(y + h) - f (y )  - f '(y).hll <_ Elnl and II/(z + h) - f ( z )  - f'(z).hll < ~lnl  

for all h such that  Ilhll <_ l l n l ,  so 

II(f(y + h) - f ( z  + h)) - ( f (y)  - f ( z ) )  - ( f ' (y)  - f'(z)).hll <_ 2~/nl. 

Therefore, 

I I ( f ' ( Y )  - f ' (z)) .hl l  < 4cIn~. 

Since this is satisfied for all h such that  Ilhll __ l l n , ,  we obtain that  

I tS ' ( v )  - f ' ( z ) l l  < 4e.  

In view of the above propositions, one could believe that  whenever X, Y are 

Banach spaces (or vector normed spaces) and f :  X --+ Y is a mapping G£teaux- 

differentiable at each point of X,  then for every ~ > 0, there exists y, z E X 

such that  Iif '(y) - f '(z)l] -< c. Our next result proves that  this is not so. 

THEOREM 2: (I) There exists a Lipschitz mapping F: g1 ~ ]~2, G~teaux- 
differentiable at each point of ~ 1, such that for every x , y  E e 1, x ~ y, then 

I I F ' ( x )  - F ' (Y)IIL(~, ,R~) > 1. Moreover, for each h E e 1, x -+ F' (x) .h  is continu- 

ous from e 1 into ]~2. 

(2) Let us denote D the vector normed space of elements of £1 with finite 

support. There exists a Lipschitz function G: £1 _~ ~, G~teaux-differentiable at 

each point of £ 1, such that for every x, y E D, x ~ y, then IIG'(x)-G'(y)Ne~ > 1. 

We shall construct F and G with the properties of Theorem 2 using series. We 

were inspired by a construction from [DI]. We need an auxiliary construction. 
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LEMMA 3: Given A = (a r, a, b, b') E l~ 4 such that a r < a < b < b ~ and ~ > O, 

there exists a C°%function ~ = ~ ,~ :  ~2 __+ ~2 such that: 

(i) I~(x,y)l < ~ ~or all (x,~) e R ~, 
(ii) ~(x, y) = 0 whenever x qt [a', b'], 

(iii) [[-~z (x,y)[I _< ~ forall (x,y) E ~2, 

(iv) [[~(x,y)[I  = 1 whenever x E [a,b], 

(v) II~(x ,~) l l  < 1 ~or all (x,~) e ~ ,  
(vi) i[  we  d e n o t e  ~ ( x , y )  = ( ~ l ( x , y ) , ~ 2 ( x , y ) ) ,  t hen  °o--~vl(x,O ) = 1 whenever Y 

x ~ [a, b]. 

Proof of Lemma 3: Let /~: l~ --+ II~ be a C°%smooth function such that  0 _< 
/~(x) _< 1 for all x, j3(x) = 0 whenever x ~t [a', b'] and ~3(x) = 1 whenever 
x E [a, b]. If n _> 1 is large enough, the function defined by 

~(x, y) = ~ -~( s in (ny) ,  cos(ny)) 

satisfies the desired properties. 
We shall also use the following criterion of G£teanx-differentiability of the 

sum of a series: 

LEMMA 4: Let X and Y be Banach spaces and, for all n, let fn: X --+ Y be 

G~teanx-differentiable mappings. Assume that ( ~  fn) converges pointwise on 

X ,  and that there exists a constant K > 0 so that for all h, 

(1) ~ sup --Ei-0fn x) 
~-~ ~ex ~,~( 

< Kilh[I. 

Then the mapping f = ~ > 1  f~ is G~teaux-differentiable on X,  for all x, 

f ' (x)  = ~n>l  ftn(x) (where the convergence of the series is in £ ( X , Y )  for 

the strong operator topology), and f is K-Lipschitz. Moreover, if each fn is 

continuous from X endowed with the norm topology into £(X,  Y) with the 

strong operator topology, then fr shares the same continuity property. 

Proof of Lemma 4: Fix x E X. First observe that  condition (1) implies that  
for all h, the series ( ~  - ~ ( x ) )  = ( ~  f~(x).h) converges in Y. Therefore, the 
series ( ~  ]~(x)) converges in £(X,  Y)  for the strong operator topology, to some 
operator T E £ ( X , Y ) ,  and by (1), []TI[ _< K.  For each h E X,  we define 
gn: ~ --+ Y by gn(t) = fn(X + th). The function g = ~,~_>1 g,~ is well defined. 

Since 

I[g,~[Ioo _< E sup (x) <_ Kllhll 
n~_l n:>l xEX 
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the mapping g is differentiable and 

, Ofn (x) = T(h) .  g'(o) = Egn(o)= F. 
n>_l n>_l 

Thus we have proved that  f is differentiable along every direction h and that 

O0~h(X ) = T(h). In other words, ] is G~teanx-differentiable at x and f ' (x)  = T. 

Since for all x, IIf'(x)l] _< K, the mean value theorem implies that f is K-  

Lipschitz. 

a I Proof  of Theorem 2, part (1): Fix an enumeration Ak = ( k, ak, bk, b'k), k E N, 

of all quadruples of dyadic numbers such that a~ < ak < bk < b~k. Select integers 

m~ such that for each n, n < m~ and (m~)k is an increasing sequence, and 
satisfying 

(2) m ~ . = m ~ n = p a n d k = e .  

This condition is satisfied, for instance, whenever m~ = 2k.3 n. Fix c > 0 and 

let ¢kn be positive real numbers such that ~n=l~ ~"~k=l Ckn = C. We note ek = 
(bO n ~ = 1  ek, so that ~ _ 1  ¢k = ~. Put  ]n,k: e I --+ ]~2 such that, if x = (xi) E e l, 

then fn,k(X) = (PAk,¢'~ (Xn, Xm'~) :fn,k is a C a function on e 1. The function 
F: e 1 ~ R2 we are looking for is defined by 

F(x) : Z s ,k(x) 
nENkEN 

CLAIM 1: F is we11-detined. 

Indeed, according to condition (i) of Lemma 3, I[f~,klic~ = II~Ak,~ llc~ = E~, so 
the series defining F converges uniformly. 

CLAIM 2: F ~8 G~teaux-differentiable on e 1 and F is ( l + ~ )-Lipschitz-continuous 
on e I . 

To see this, we apply Lemma 4: let h = ( h l , . . . , h n , . . . )  E e 1. By (iii) and 
(v), we have for all n, k 

sup 0 a ~ ( x  ) < Ih,~,~]+e~lh~l < Ih~l+x~llhll~. 
xEX 

So, because of condition (2), 

n~,k sup I 0 0 ~ ( X )  --< (1 + ~)[IhII1. 
xEX 

We have proved that condition (1) of Lemma 4 is satisfied with K = 1 + c, thus 

F is Gfiteaux-differentiable o n  e I and F is (1 + c)-Lipschitz-continuous on e 1. 
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CLAIM 3: I f  x # y E gl, then liE'(x) - F'(y)llL(O,~2 ) >_ 1 - 2E. 

Indeed, let n E N such that x,~ # y~. Let k be such that xn E [ak, bk] and 

Yn ~t [a~k, b~k]. According to (ii) and (iv) of Lemma 3, 

~ ( X ) [ = l  and ~ ( y ) = 0 . m k  

On the other hand, for all r, 

Ofm'ur x) _ Ofra'~,,- Y ( and ( ) 

and, if g # m~ and (g, r) # (n, k), 

Ofe: Ofe,r 
cgxm,~ (x) = 0 and OXm,~ (y) = O. 

Therefore, 

OF OF 
l i E ' ( x )  - F'(y)IIL(el,R2) >_ O--~ (x) - O--~m (Y) 

Ofe,K 
>_1-  ~_, 0--~ ( x ) - - -  

(e,r)¢(n,k) 

> 1 - 2 e .  

cOf~,r 
Oxm,~ (y) 

I I G ' ( x )  - a'(y)tle  >_ 1 - 

Remark: (1) If we set 4) = f / (1  - 2e), we have obtained, for every (~ > 0, the 
construction of a function 4): ~1 _.+ ]I~2, G£teaux-differentiable at every point of 

e 1 , satisfying: 

(i) for all x ,y  E ~1,114)(x ) _ 4)(y)ll < (1 + a)llx - ylll, 

(ii) for all x # y E ~1,114),(x ) _ 4),(y)llc(o,R2) > 1. 

Let us now prove part (2) of Theorem 2. Since F: gl ._~ ]I~2, we can write 

F = (G, H),  where G, H: ~1 __~ ]I~. We shall also denote fn,k = (gn,k, hn,k); 

G: gl _+ ~ is Lipschitz continuous, G£teaux-differentiabte at  each point of e 1. 

Let x = ( x i ) , y  = (yi) E D and n be such that xn # y n .  Let k be such that 
, a '  xn E [ak bk], Yn ~ [ k, b'k] and Xm~ = 0. According to (vi) of Lemma 3, we have 

0g--~n'k(x) = 1  and O~g~n'k(y)=O. 
OXm k OXm'~ 

We conclude, as in the proof of Claim 3 of part (1), that 
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(2) Fix h E gl. Since x ~ F'(x).h is continuous from ~1 i n t o  11~ 2 , the 

set {F'(x).h;x E gl} is connected. This is in contrast with the fact that 

{F'(x); x E gl } is discrete in L:(gl, ]~2 ). 

(3) A careful look at the above construction shows that f is uniformly GSteaux- 

differentiable. 

(4) Note that for cardinality reasons, if dim(X) >_ 1 and ~(X, Y) is separable, 

then for all GSteaux-differentiable mappings from X into Y, and for all E > 0, 

there exists y,z  E X,  y # z such that ]If'(Y) - f'(z)]I < c. Therefore, it is 

not possible to replace gl by gP (p > 1) in Theorem 2. However, there exists a 

Lipschitz function H: g2 _~ g2, G£teaux-differentiable at each point of g2, such 

that for every x,y  E g2, i fx  # y, then 

I IH'(x)  - H'(y)[IL(e~) _ 1. 

This will follow from the following more general result: 

THEOREM 3: Let Xp = gP ff 1 < p < + ~  and Xo~ 

+c¢. The following assertions are equivalent: 

(1) 

(2) 
(3) 

=Co. Let us ~x l <_ p,q <_ 

There exists a Lipschitz continuous mapping H: Xp ~ Xq, Ggteaux- 

differentiable at each point of Xp, such that for every x, y E Xp, x # y, 

then IIH'(x)- H'(y)IIL(xp,xq) >_ 1. 
p<_q. 

~(Xp, Xq) is not separable. 

Proof of Theorem 3: According to Remark (4) above, (1) implies (3). If 

p > q, then by Pitt's theorem, all operators from Xp to Xq are compact, hence 

~(Xp, Xq) is separable. Therefore (3) implies (2). So it remains to prove that 

(2) implies (1). Assume that p < q and let (en) be the usual basis of Xp. Let 

Tk E £(I~ 2, Xq) defined by Tk(x, y) = Xe2k + ye2k+l. Denote aq the common 

n and be defined as in the norm of the operators Tk. Let Ak, ~., m k ~ , ~  
proof of Theorem 2. Put fn,k: Xp --+ Xq such that, if x = (xi) E Xp, then 

fn,k(X) = Tm~ o ~A~,~'~(Xn,Xm~): the function fn,k is a C ~ mapping from Xp 
into Xq. The function H: Xp -+ Xq we are looking for is defined by 

ncN kEN 

As in the proof of Theorem 2, H is well-defined. Lemma 4 is no longer appli- 

cable in order to show that H is G£teaux-differentiable at each point of Xp. 

But Lemma 4 remains true if the hypothesis (1) from Lemma 4 is replaced by 
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condition (3) below: 

(3) for all h, ( E  ~-~ (x)) converges uniformly with respect to x. 

So, fix h = (h l , . . . , hn , . . . )  EXp. We have 

O~h k (x) = h~uk,~(x) + h,~Vk,n(X) 

with IlUk,n(X)llq <_ C~aq, Vk,n(X) E span{e2m~,e2m~+l} and IlVk,n(x)llq ~_ aq. 
We claim that both series (~-~k,n hnuk,n(x)) and (~k,n hm~Vk,n(X)) are uni- 

formly converging with respect to x. Indeed, for the first one, this follows from 

the fact that for each x, Ilhnuk,m(X)llq ~_ IIhllp.aq.~., and that ~-~n~__l ~ = 1  c~ < 

+c~. For the second one, (~,k hm~Vk,m(X)) converges uniformly because it sat- 

isfies the uniform Cauchy condition. Indeed, fix 5 > 0 and a finite set A C N× N 

such that ~(k,n)~tA hPm~. < 5p" For fixed x, the vk,n(x) are elements of Xq with 

disjoint supports, so, for any finite subset F of (N × N)\A, 

hm~vk,m(X) ( )l/q E : E IIhm:v ,m(x),,q q 

~_aq (n,~k)EF hq~ ~_aq (n,k)cFE hm•)  (aqS. 

Notice that we used in the above chain of inequalities the fact that p < q. The 

above estimate is uniform in x, therefore the series (~a,~ hm~ Vk,~(X)) satisfies 

the uniform Cauchy condition. Applying the variant of Lemma 4 mentioned 

above, we get that H is Lipschitz continuous and G~teaux-differentiable at each 

point of Xp. As in the proof of Theorem 2, one sees that there exists a > 0 such 

that for every x,y E Xp, i fx  # y, then IIH'(x) - H'(y)ll~(~,,~ ) >_ a. 
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